Cotransfected human chondrocytes: over-expression of IGF-I and SOX9 enhances the synthesis of cartilage matrix components collagen-II and glycosaminoglycans.

نویسندگان

  • M Simental-Mendía
  • J Lara-Arias
  • E Álvarez-Lozano
  • S Said-Fernández
  • A Soto-Domínguez
  • G R Padilla-Rivas
  • H G Martínez-Rodríguez
چکیده

Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Expression Level of Cartilage Genes in Rat Articular Chondrocyte Monolayer and 3D Cultures using Real Time PCR

Purpose: to compare the expression level of certain genes related to cartilage and non-cartilage tissues at monolayer and alginate cultures derived from rat articular cartilage. Materials and Methods: Articular cartilage was harvested from knee joints of 10 male rats and was digested using enzymatic solution consisting of 0.2% collagenase I and 0.1% pronase. Released chondrocyte were then plate...

متن کامل

Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9.

OBJECTIVE Human osteoarthritis (OA) is characterized by a pathologic shift in articular cartilage homeostasis toward the progressive loss of extracellular matrix (ECM). The purpose of this study was to investigate the ability of rAAV-mediated SOX9 overexpression to restore major ECM components in human OA articular cartilage. METHODS We monitored the synthesis and content of proteoglycans and...

متن کامل

Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions

BACKGROUND Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (...

متن کامل

Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage.

The repair of articular cartilage lesions remains a clinical problem. Two novel approaches to cartilage formation, gene transfer and tissue engineering, have been limited by short-term transgene expression in transplanted chondrocytes and inability to deliver regulatory signals to engineered tissues according to specific temporal and spatial patterns. We tested the hypothesis that the transfer ...

متن کامل

Comparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro

  Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas

دوره 48 12  شماره 

صفحات  -

تاریخ انتشار 2015